รางวัลโนเบลสาขาเคมีประจำปี 2023 ได้มอบรางวัลให้กับการค้นพบและการพัฒนาควอนตัมดอทส์(Quantum Dots, QTDs) หรือ “จุดควอนตัม” ซึ่งเป็นอนุภาคที่มีขนาดเล็กมากในระดับ 1-10 นาโนเมตร ทุกคนที่ศึกษาวิชาเคมีคงจะทราบว่าสมบัติของธาตุนั้นขึ้นอยู่กับจำนวนอิเล็กตรอนที่มีอยู่ อย่างไรก็ตามเมื่ออนุภาคมีขนาดเล็กมากจนถึงระดับนาโนจะเกิดปรากฏการณ์ควอนตัมขึ้น จึงทำให้อนุภาคควอนดัมดอทส์เกิดสมบัติพิเศษที่ต่างจากอนุภาคขนาดใหญ่ทั่วไป ซึ่งสมบัติที่น่าทึ่งและโดดเด่นของควอนตัมดอทส์ นำไปสู่การประยุกต์ใช้ในเทคโนโลยีต่างๆ มากมาย เช่น เป็นตัวกำเนิดแสงจากในจอโทรทัศน์และหลอดไฟ QLED และยังสามารถช่วยให้ศัลยแพทย์มองเห็นเนื้องอกขนาดเล็กและผ่าตัดได้แม่นยำจากภายในร่างกายผู้ป่วย เป็นต้น
Alexei I. Ekimov ผู้ไขความลึกลับของกระจกสี
หนึ่งในปรากฏการณ์ควอนตัมที่มีมาช้านานนั้นมาจากวงการเป่าแก้ว ช่างเป่าแก้วทุกคนทราบดีว่า เมื่อเจือโลหะลงไปในแก้วด้วยปริมาณที่ต่างกัน จะสามารถผลิตแก้วที่มีสีต่างกันได้ ปรากฏการณ์นี้ทำให้นักฟิสิกส์อย่าง Alexei I. Ekimov สนใจเป็นอย่างมาก เพราะมันดูไม่มีเหตุผลเอาซะเลย หากคุณวาดภาพด้วยสีแดงจากแคดเมียม มันก็จะต้องเป็นสีแดงสีเดิมเสมอ เว้นแต่คุณจะผสมเม็ดสีอื่นเข้าไป แล้วสารชนิดเดียวกันจะทำให้แก้วมีสีต่างกันได้อย่างไร?
ในสมัยที่ Alexei Ekimov ทำวิทยานิพนธ์ในระดับปริญญาเอกเกี่ยวกับวัสดุกึ่งตัวนำ (semiconductor) ซึ่งเป็นส่วนประกอบที่สำคัญในไมโครอิเล็กทรอนิกส์ เขาได้ใช้แสงเป็นเครื่องมือสำคัญในการวิเคราะห์และประเมินคุณภาพของวัสดุ เนื่องจากสมบัติการดูดกลืนแสง (absorption) สามารถบ่งบอกองค์ประกอบและคุณภาพความเป็นผลึกของวัสดุได้ Ekimov จึงได้นำเทคนิคเดียวกันนี้มาใช้วิเคราะห์กระจกสี เขาเลือกผลิตแก้วที่ย้อมสีด้วยคอปเปอร์คลอไรด์ (CuCl) และให้ความร้อนแก้วในช่วงอุณหภูมิระหว่าง 500°C ถึง 700°C เป็นเวลาตั้งแต่ 1 ถึง 96 ชั่วโมง เมื่อแก้วเย็นลงและแข็งตัว เขาจึงวิเคราะห์แก้วดังกล่าวด้วย X-ray เพื่อศึกษาผลึกคอปเปอร์คลอไรด์เล็กๆ ที่ก่อตัวขึ้นภายในแก้ว เขาพบว่าอุณหภูมิในการผลิตส่งผลต่อขนาดของอนุภาคเหล่านี้ ทำให้ผลึก CuCl มีขนาดตั้งแต่ประมาณ 2 นาโนเมตร ถึง 30 นาโนเมตร
สิ่งที่น่าสนใจก็คือ การดูดกลืนแสงของกระจกสีนั้นขึ้นกับขนาดของอนุภาค อนุภาคที่ใหญ่ที่สุดดูดกลืนแสงในลักษณะเดียวกับคอปเปอร์คลอไรด์ทั่วๆ ไป แต่ยิ่งอนุภาคมีขนาดเล็ก แสงที่ดูดกลืนได้ก็จะยิ่งเป็นสีฟ้ามากขึ้นเท่านั้น ในฐานะนักฟิสิกส์ Ekimov มีความคุ้นเคยเป็นอย่างดีกับกลศาสตร์ควอนตัมและตระหนักได้อย่างรวดเร็วว่านี่คือปรากฎการณ์ quantum effect
Ekimov ได้ตีพิมพ์ผลการค้นพบของเขาในวารสารวิทยาศาสตร์ของโซเวียตในปี 1981 แต่บทความของเขานั้นดันเป็นภาษารัสเซีย ทำให้ยังไม่มีใครจากโลกตะวันตกทราบว่าได้มีผลงานตีพิมพ์เกี่ยวกับควอนตัมดอทส์ออกมาแล้ว
Louis E. Brus ผู้บุกเบิกความอัศจรรย์ของอนุภาคขนาดเล็ก
ในช่วง 1980s Louis E. Brus เป็นนักวิจัยที่ Bell Laboratories ในสหรัฐอเมริกา โจทย์วิจัยของเขามีเป้าหมายระยะยาวคือ การทำให้ปฏิกิริยาเคมีเกิดขึ้นโดยใช้พลังงานแสงอาทิตย์ และเพื่อให้บรรลุเป้าหมายนี้ เขาเลือกใช้อนุภาคแคดเมียมซัลไฟด์ (Cadmium Sulfide: CdS) ซึ่งสามารถดูดกลืนแสงเพื่อเป็นพลังงานขับเคลื่อนปฏิกิริยาได้ (หรือที่เรารู้จักกันในนามว่าตัวเร่งปฏิกิริยาเชิงแสง หรือ photocatalyst นั่นเอง) Brus ตั้งสมมุติฐานว่า หากทำให้อนุภาค CdS มีขนาดเล็กมากๆ ก็จะยิ่งมีพื้นที่ผิวที่ใช้ทำปฏิกิริยาได้มากยิ่งขึ้น เขาจึงมุ่งสังเคราะห์ CdS ที่มีขนาดเล็กที่สุดเท่าที่จะควบคุมได้
ระหว่างที่เขาทำงานกับอนุภาคขนาดเล็กๆ เหล่านี้ Brus สังเกตเห็นปรากฏการณ์ที่น่าฉงน นั่นคือสมบัติทางแสงของอนุภาคที่เป็นคอลลอยด์ในของเหลวเปลี่ยนไปหลังจากที่เขาทิ้งมันไว้สักพักหนึ่ง เขาเดาว่าอาจเป็นเพราะอนุภาคมีขนาดใหญ่ขึ้น ดังนั้นเพื่อยืนยันสมมุติฐาน เขาจึงสังเคราะห์อนุภาคแคดเมียมซัลไฟด์ที่มีเส้นผ่านศูนย์กลางเพียงประมาณ 4.5 นาโนเมตร เทียบกับอนุภาคขนาดใหญ่ซึ่งมีเส้นผ่านศูนย์กลางประมาณ 12.5 นาโนเมตร เขาพบว่า อนุภาคขนาดใหญ่ดูดกลืนแสงที่ความยาวคลื่นเดียวกันกับแคดเมียมซัลไฟด์ทั่วไป แต่อนุภาคขนาดเล็กมีการดูดกลืนแสงไปทางสีน้ำเงินมากขึ้น (ดังภาพ) Brus จึงมั่นใจว่าเขาสิ่งที่เค้าพบคือปรากฏการณ์ควอนตัม (quantum effect) ที่ขนาดของอนุภาคส่งผลต่อสมบัติทางกายภาพของวัสดุ เขาตีพิมพ์การค้นพบของเขาในปี 1983 หลังจาก Ekimov ไม่นาน จากนั้นก็เริ่มตรวจสอบอนุภาคที่เกิดจากสสารอื่นๆ หลายชนิด และพบว่ายิ่งอนุภาคมีขนาดเล็กเท่าไร พวกมันก็จะยิ่งดูดกลืนแสงสีฟ้ามากขึ้นเท่านั้น
Moungi G. Bawendi ผู้คิดสูตรควอนตัมดอทส์ที่ใช้งานได้จริง
Moungi Bawendi เข้าสู่วงการควอนตัมดอทส์จากการฝึกงานระหว่างซัมเมอร์ที่ Bell Labs ระหว่างการเรียนปริญญาเอก หลักจากเรียนจบ เขาเข้าร่วมกลุ่มวิจัยของ Louis Brus ในฐานะนักวิจัยหลังปริญญาเอก (postdoc) ในปี 1988 ในยุคแรกเริ่มของวงการควอนตัมดอทส์ ปัญหาที่ท้าทายที่สุดคือการสังเคราะห์ควอนตัมดอทส์ที่มีคุณภาพสูง มีขนาดเท่ากัน ผิวเรียบไร้ตำหนิ และมีปริมาณมากพอที่จะนำไปใช้จริงในอุตสาหกรรม Bawendi ได้รับโจทย์ที่ยากยิ่งนี้ เขาได้ทดลองสูตรสังเคราะห์ต่างๆ โดยใช้สารหลากหลายชนิด ปรับเปลี่ยนทั้งตัวทำละลาย อุณหภูมิ และเทคนิคต่างๆ เพื่อพยายามสร้างผลึกอนุภาคนาโนที่คุณภาพดีขึ้น
โจทย์ที่ว่านี้ใช้เวลามากกว่าที่คิด แต่ Bawendi ก็ไม่เคยยอมแพ้ แม้จะได้งานประจำเป็นอาจารย์ที่ภาควิชาเคมี สถาบันเทคโนโลยีแมสซาชูเซตส์ (Massachusetts Institute of Technology: MIT) เขายังคงพยายามอย่างต่อเนื่องในการสังเคราะห์อนุภาคนาโนที่มีคุณภาพสูงขึ้น
ความก้าวหน้าครั้งสำคัญเกิดขึ้นในปี 1993 เมื่อกลุ่มวิจัยฉีดสารตั้งต้นในการผลิตอนุภาคลงในตัวทำละลายร้อนๆ ที่มีจุดเดือดสูงและคุณสมบัติเหมาะสม การฉีดสารตั้งต้นเข้าไปปริมาณมากทำให้สารละลายเกิดการอิ่มตัวยิ่งยวดและตกผลึก (nucleation) พร้อมๆ กันทันทีแล้วหยุด เนื่องจากอุณหภูมิโดยรวมลดต่ำลง (เพราะสารที่ฉีดเข้ามาอุณหภูมิต่ำกว่าตัวทำละลาย) จากนั้นด้วยการปรับอุณหภูมิและควบคุมเวลาในการทำปฏิกิริยา Bawendi จึงประสบความสำเร็จในการสังเคราะห์อนุภาคนาโนที่มีรูปทรงเกือบจะสมบูรณ์แบบ และมีขนาดตามที่กำหนด ทำให้เกิดปรากฏการณ์ควอนตัมที่แตกต่างกันออกไปอย่างชัดเจน ด้วยวิธีการสังเคราะห์ที่แสนง่ายแบบปฏิวัติวงการ ทำให้นักเคมีทั่วโลกหันมาสนใจนาโนเทคโนโลยี โดยเฉพาะการศึกษาสมบัติของควอนตัมดอทส์มากขึ้นเรื่อยๆ
ในปัจจุบัน เราสามารถพบเจอควอนตัมดอทส์ได้ในจอทีวีแบบ QLED ซึ่งเจ้า Q ที่ว่าก็ย่อมาจาก Quantum dot นี่เอง หลักการทำงานของมันก็คือ เมื่อควอนตัมดอทส์รับแสงสีฟ้าจาก LED มันจะดูดกลืนแสงนั้นและคายแสงสีอื่นออกมา ซึ่งการปรับเปลี่ยนขนาดของควอนตัมดอทส์ทำให้เราได้แสงเขียวและแดง เพียงพอที่จะสร้างสี RGB ที่จำเป็นในจอทีวี นอกจากจะใช้จูนสีของแสงไฟต่างๆ แล้ว ควอนตัมดอทส์ยังมีประโยชน์ในทางชีวเคมีและการแพทย์ สามารถใช้ติดแท็กสีให้กับเซลล์และเนื้องอกในร่างกาย หรือเป็นประโยชน์อย่างยิ่งในวงการเคมี ที่ใช้ควอนตัมดอทส์ในการทำปฏิกิริยาเชิงแสง เป็นเซนเซอร์ หรือเป็นตัวเร่งปฏิกิริยาที่สำคัญต่างๆ อีกมากมาย
อ้างอิง
https://www.nobelprize.org/uploads/2023/10/popular-chemistryprize2023.pdf
เรียบเรียงโดย ดร.วรรณวิทู วรรณโมลี และ นายอภินันท์ แสงศรีจันทร์
บรรณาธิการ ดร. ปองกานต์ จักรธรานนท์