CCUS เทคโนโลยีกำจัดคาร์บอน สู่ทางรอดของประเทศไทย?

สวัสดีปีใหม่ 2567 ผู้อ่านทุกท่าน

ปีเก่าผ่านไปปีใหม่เข้ามาพร้อมกับความท้าทายโจทย์ใหญ่โจทย์เดิม คือ สภาวะโลกร้อน ที่ทำให้เกิดสภาพอากาศแปรปรวน อันส่งผลกระทบต่อชีวิตมนุษย์และระบบนิเวศของโลก สภาวะโลกร้อนนี้มีสาเหตุหลักมาจากกิจกรรมของมนุษย์ที่เพิ่มปริมาณก๊าซเรือนกระจกในบรรยากาศ โดยก๊าซเรือนกระจกหลักก็คือคาร์บอนไดออกไซด์ (CO2) ที่มาจากการเผาไหม้เชื้อเพลิงปิโตรเลียมนั่นเอง

ในปัจจุบัน ประเทศไทยปลดปล่อยก๊าซ CO2 สู่ชั้นบรรยากาศกว่า 300 ล้านตันต่อปี ภาคป่าไม้ในประเทศไทยสามารถดูด CO2 กลับได้ประมาณ 90 ล้านตันต่อปี พื้นที่ปลูกป่าในประเทศไทยนั้นไม่เพียงพอที่จะดักจับ CO2 ทั้งหมดไว้ได้ เพื่อที่จะบรรลุเป้าหมายความเป็นกลางทางคาร์บอน ใน พ.ศ. 2593 (ค.ศ. 2050) นอกจากพวกเราทุกคนจะต้องปฏิวัติกระบวนการใช้ทรัพยากรในทุกภาคส่วนแล้ว อุตสาหกรรมไทยเองก็จะต้องหา solution ทางเทคโนโลยีใหม่ๆ เพื่อช่วยลดการปลดปล่อย CO2 ให้มากที่สุด

เป็นที่ยอมรับกันว่า เทคโนโลยีการดักจับ ใช้ประโยชน์ และกักเก็บคาร์บอน (Carbon Capture Utilization and Storage: CCUS) เป็นอีกหนึ่งเทคโนโลยีที่มีประสิทธิภาพในการกำจัด CO2 ซึ่งมีความสำคัญต่อการบรรลุเป้าหมายความเป็นกลางทางคาร์บอน หรือ carbon neutrality และการปล่อยก๊าซเรือนกระจกสุทธิเป็นศูนย์ หรือ Net Zero Emissions ในบทความนี้ เราจะพาไปทำความรู้จักกับเทคโนโลยี CCUS กัน

CCUS สามารถแบ่งเป็น 2 เทคโนโลยีหลัก คือ Carbon Capture and Utilization (CCU) และ Carbon Capture and Storage (CCS) [1-2] โดยทั้งสองเทคโนโลยีมีกระบวนการดักจับ (capture) ก๊าซ CO2 เป็นขั้นตอนร่วม ซึ่งครอบคลุมถึง การดักจับจากแหล่งกำเนิด เช่น โรงงานไฟฟ้าถ่านหินและน้ำมันเชื้อเพลิงธรรมชาติ ซึ่งมีความเข้มข้นของ CO2 อยู่ในระดับ 3 – 20% เทคโนโลยีการดักจับในปัจจุบันมีหลากหลายประเภท เช่น การดักจับหลังการเผาไหม้ (post-combustion capture) การดักจับก่อนการเผาไหม้ (pre-combustion capture) และการเผาไหม้ด้วยออกซิเจน (oxy-fuel combustion) และรวมไปถึงการดักจับ CO2 โดยตรงในอากาศหรือ DAC (Direct Air Capture) ซึ่งมีความท้าทายมากเพราะก๊าซคาร์บอนไดออกไซด์ในบรรยากาศมีความเข้มข้นในระดับไม่เกิน 500 ppm เท่านั้น

ในกรณีของ CCU ก๊าซ CO2 ที่ดักจับได้จะถูกนำไปใช้ประโยชน์เป็นวัตุดิบในการผลิตสารเคมี เชื้อเพลิง และวัสดุสำหรับก่อสร้าง เช่น น้ำมันเชื้อเพลิง โพลิเมอร์ พลาสติก และแคลเซียมคาร์บอเนต โดยเทคโนโลยีนี้มีทั้งอยู่ในระดับกำลังพัฒนาและมีการนำไปใช้ประโยชน์เชิงพาณิชย์บ้างแล้ว แต่ล้วนมีความท้าทายเนื่องจากก๊าซ CO2 มีความเสถียรสูง การเปลี่ยนแปลงเชิงเคมีจึงต้องใช้พลังงานมาก ทำให้ผลิตภัณฑ์ที่สังเคราะห์ขึ้นจาก CO2 มีต้นทุนเชิงพลังงานที่สูง
ในกรณีของ CCS ก๊าซ CO2 ที่ดักจับได้จะถูกกักเก็บไว้อย่างถาวรในสถานที่ปลอดภัย เพื่อลดปริมาณการปล่อยคาร์บอนไดออกไซด์เข้าสู่ชั้นบรรยากาศ กระบวนการ CCS มีความท้าทายหลายประการ ทั้งในด้านการขนส่ง เนื่องจาก CO2 ที่ต้องกำจัดนั้นมีปริมาณมหาศาลและมักจะอยู่ไกลจากแหล่งกักเก็บ การขนส่งทางรถยนต์ เรือ หรือลำเลียงทางท่อ ล้วนมีค่าใช้จ่ายสูง นอกจากนี้ การเสาะหาพื้นที่เก็บ (storage site) เช่น ชั้นหินใต้ดินหรือใต้ทะเล ที่มีโอกาสรั่วไหลต่ำ ก็เป็นความท้าทายทางธรณีวิทยาอีกด้วย

จะเห็นได้ว่า CCUS เกี่ยวข้องกับหลากหลายเทคโนโลยี แล้วเทคโนโลยีใดที่เหมาะสมกับประเทศไทยของเรา และสามารถทำให้บรรลุเป้าหมายความเป็นกลางทางคาร์บอนในปี 2593 ได้

ในปี 2566 ที่เพิ่งผ่านพ้นไป สำนักงานคณะกรรมการส่งเสริมวิทยาศาสตร์ วิจัยและนวัตกรรม (สกสว.) ได้มอบหมายให้ศูนย์นาโนเทคโนโลยีแห่งชาติเป็นหน่วยงานหลักร่วมกับพันธมิตรและผู้เชี่ยวชาญ ได้แก่ คณะวิจัยจากมหาวิทยาลัยเชียงใหม่ มหาวิทยาลัยธรรมศาสตร์ มหาวิทยาลัยเกษตรศาสตร์ มหาวิทยาลัยมหิดล และจุฬาลงกรณ์มหาวิทยาลัย จัดทำแผนที่นำทางเทคโนโลยีการดักจับ การใช้ประโยชน์ และการกักเก็บคาร์บอน (CCUS Technological roadmap: Navigating Thailand towards Carbon Neutrality) เพื่อวิเคราะห์ จัดลำดับความสำคัญ Key Technology ของ CCUS พร้อมทั้งเสนอประเด็นสำคัญเชิงนโยบาย เป้าหมาย ทิศทาง แนวทางวิจัยและกรอบเวลาในการพัฒนาเทคโนโลยี CCUS ที่เหมาะสมกับบริบทของประเทศไทย

หลังจากที่คณะวิจัยและที่ปรึกษาโครงการได้ดำเนินโครงการ ผ่านการรวบรวมความคิดเห็น ลงพื้นที่ และสัมภาษณ์เชิงลึกทั้งหน่วยงานภาครัฐและเอกชน รวมถึงการทำประชาพิจารณ์ต่อสาธารณชน ร่างแผนที่นำทางเทคโนโลยี CCUS ของประเทศไทยที่นำเสนอเป้าหมายการลดการปลดปล่อยก๊าซ CO2 รวมถึงกลไกขับเคลื่อนเชิงกลยุทธ์เพื่อมุ่งสู่ความเป็นกลางทางคาร์บอน จึงสำเร็จลุล่วงลง โดย CCUS roadmap แบ่งตามกรอบเวลาเป็น 3 ระยะ ได้แก่ ระยะแรก (ปัจจุบัน – พ.ศ. 2573) ระยะกลาง (พ.ศ. 2574 – 2583) และ ระยะไกล (พ.ศ. 2584 – 2593) ประกอบด้วย 5 องค์ประกอบหลัก [3] ดังนี้

1. Strategic Targets (เป้าหมายเชิงกลยุทธ์): กำหนดเป้าหมายปริมาณการลดคาร์บอนไดออกไซด์ในประเทศไทยด้วยเทคโนโลยี CCUS ไว้ที่ 1-10 ล้านตันต่อปีในระยะแรก 10-50 ล้านตันต่อปีในระยะกลาง และ 50-150 ล้านตันต่อปีสำหรับระยะไกล

2. การประยุกต์ใช้ (Applications): ระยะแรกเริ่มด้วยการประยุกต์ใช้เทคโนโลยีที่มีความพร้อมสูง เช่น การผลิตคาร์บอเนต คอนกรีต ควบคู่ไปกับการจับคู่แหล่งปลดปล่อย CO2 และแหล่งกักเก็บ และโครงการนำร่องนอกชายฝั่ง ในระยะกลาง CCU ควรมุ่งเป้าไปที่การผลิตสารเคมีสำคัญ เช่น ยูเรีย เมทานอล โอเลฟินส์เบา และในระยะไกล มุ่งเน้นการผลิต Sustainable Aviation Fuel (SAF) หรือวัสดุที่มีมูลค่าสูง

3. Technologies (เทคโนโลยี): แผนที่นำทางนำเสนอการใช้เทคโนโลยีตามระดับความพร้อมของเทคโนโลยี (TRL) และความเหมาะสมกับสถานการณ์ในแต่ละช่วงเวลา

เทคโนโลยี capture ที่มีความเป็นไปได้ในระยะใกล้ คือ การใช้ Membrane, Amine Absorption, Solvent Absorption และ Solid Adsorption ในระยะกลางคือ Chemical-looping และในระยะไกล คือ Direct Air Capture (DAC), Pre-combustion และ Cryogenic Separation

เทคโนโลยี CCU ในประเทศไทยสามารถแบ่งได้ 4 กลุ่มหลัก ได้แก่ Thermochemical, Electrochemical-Photochemical, Mineralization และ Biological โดยเทคโนโลยีที่มีความพร้อมสูงสุดจะอยู่ในกลุ่มของ Mineralization โดยเฉพาะในกลุ่มอุตสาหกรรมคาร์บอเนต (TRL 3-9) ดังนั้นเทคโนโลยีนี้จึงเหมาะสมที่จะนำมาใช้ในระยะแรก ในระยะกลาง CCU ที่อาจมีความพร้อมมากขึ้น คือ CO2 Hydrogenation เพื่อผลิตเมทานอลและกรดฟอร์มิก Fischer-Tropsch Synthesis เพื่อผลิตโอเลฟินส์ รวมทั้ง CO2 Fermentation เพื่อผลิตผลิตภัณฑ์ที่มีมูลค่าสูง เช่น ยา หรือ โปรตีน และในระยะไกล คือ Artificial photosynthesis หรือการสังเคราะห์แสงประดิษฐ์เลียนแบบพืช

ด้านเทคโนโลยี CCS ที่เหมาะสมสำหรับระยะแรก คือ การทำ Seismic Survey เพื่อหาแหล่งกักเก็บ การวางแผนเชิง logistic เพื่อจับคู่ source-sink และการกักเก็บก๊าซใน Depleted Oil and Gas Field ในระยะกลางคือ การกักกับในชั้นน้ำเกลือใต้พิภพ (saline aquifer) ซึ่งจะทำให้การขนส่ง CO2 มีระยะทางที่สั้นลง รวมถึงการทำ measurement, monitoring, verification (MMV) เพื่อยืนยันความปลอดภัยของแหล่งกักเก็บ และในระยะไกล คือการทำ CCS เพื่อจัดการก๊าซเรือนกระจกในระดับประเทศ

4. Enablers/Drivers (การสนับสนุน): กลไกสนับสนุนและขับเคลื่อน มีประเด็นสำคัญ ดังนี้
กลไกสนับสนุนโครงสร้างพื้นฐาน: ประกอบด้วยกฎหมาย ระเบียบ ข้อบังคับ และมาตรการส่งเสริมการใช้เทคโนโลยี CCUS มาตรการด้านความปลอดภัย การจัดซื้อจัดจ้างผลิตภัณฑ์ที่มาจากเทคโนโลยี CCU การสร้างพื้นที่ Sandbox และ Grid hub รวมถึง Storage hub การพัฒนาระดับเทคโนโลยีและฐานข้อมูลด้านการปลดปล่อยก๊าซคาร์บอนไดออกไซด์ การพัฒนาโครงการนำร่อง ตลอดจนหลักสูตรการศึกษาด้านเทคโนโลยี CCUS ในมหาวิทยาลัย การฝึกอบรมเทคโนโลยีแก่บุคลากรภาคอุตสาหกรรม และงบประมาณสนับสนุนการวิจัยพัฒนาเทคโนโลยีกลไกขับเคลื่อน: ประกอบด้วย กลไกขับเคลื่อนเชิงสถาบัน โดยจัดตั้งกลุ่มผู้เชี่ยวชาญ National CCUS Alliance และการใช้กลไกขับเคลื่อนด้านการเงินและมาตรการจูงใจ เช่น การผลักดันภาคอุตสาหกรรมสู่การใช้ Carbon Credit การสนับสนุนเงินลงทุนในเทคโนโลยี CCUS จากภาครัฐ และการส่งเสริมการลดหย่อนภาษีคาร์บอน นอกจากนี้ยังมีกลไกสนับสนุนการถ่ายทอดเทคโนโลยีและสนับสนุน Public awareness

5. Pilot Projects: ปัจจุบันมีโครงการนำร่องเกิดขึ้นบ้างแล้ว ทั้งจากภาคเอกชนและรัฐวิสาหกิจ เช่น โครงการนำร่อง CCS ในอ่าวไทย [4]โครงการสำรวจแหล่ง CCS ในบริเวณเหมืองแม่เมาะและแอ่งลำปาง โครงการนำ CO2 จากอุตสาหกรรมเป็นมาใช้ในการผลิตโซเดียมไบคาร์บอเนต [5] เป็นต้น
การขับเคลื่อนและการประยุกต์ใช้เทคโนโลยี CCUS เป็นความท้าทายยิ่งใหญ่ระดับประเทศ จำเป็นต้องได้รับความร่วมมือจากทั้ง ภาครัฐ ภาคธุรกิจ และภาคประชาชน เพื่อบรรลุเป้าหมายความเป็นกลางทางคาร์บอนและการพัฒนาที่ยั่งยืนของประเทศบนพื้นฐานของการเจริญเติบโตของธุรกิจที่เป็นมิตรต่อสิ่งแวดล้อม เพิ่มความเสมอภาคของสังคมและความกินดีอยู่ดีของประชาชน
เขียนโดย ดร. สราวุธ อิ่มเพ็ง และ จิรภัทร์ สันตติวงศ์ไชย
ภาพโดย ดร. ปองกานต์ จักรธรานนท์
#NCASresearch #CCUS #BCG
เอกสารอ้างอิง
[1] https://co2value.eu/
[2] https://www.nstda.or.th/nac/2023/seminar/se25/
[3] รายงานแผนที่นำทางเทคโนโลยีการดักจับ การใช้ประโยชน์ และการกักเก็บคาร์บอน เพื่อนำทางประเทศไทยไปสู่ความเป็นกลางทางคาร์บอน โดย ศูนย์นาโนเทคโนโลยีแห่งชาติ (อยู่ระหว่างการเตรียมเผยแพร่)
[4] https://www.pttep.com/th/Sustainability/Carbon-Capture-And-Storage/Ccs-Returns-Co2-To-Where-It-Comes-From.aspx
[5] https://ghgreduction.tgo.or.th/en/database-and-statistics/registered-projects/item/838-co2-recovery-plant-for-sodium-bicarbonate-production-by-genius-integrated-solutions-co-ltd-co2.html

โพสต์ที่คุณน่าจะสนใจ

CCUS เทคโนโลยีกำจัดคาร์บอน สู่ทางรอดของประเทศไทย?

สวัสดีปีใหม่ 2567 ผู้อ่านทุกท่าน ปีเก่าผ่านไปปีใหม่เข้ามาพร้อมกับความท้าทายโจทย์ใหญ่โจทย์เดิม คือ สภาวะโลกร้อน ที่ทำให้เกิดสภาพอากาศแปรปรวน อันส่งผลกระทบต่อชีวิตมนุษย์และระบบนิเวศของโลก สภาวะโลกร้อนนี้มีสาเหตุหลักมาจากกิจกรรมของมนุษย์ที่เพิ่มปริมาณก๊าซเรือนกระจกในบรรยากาศ โดยก๊าซเรือนกระจกหลักก็คือคาร์บอนไดออกไซด์

CARBANO เทคโนโลยีผลิตถ่านกัมมันต์ประสิทธิภาพสูงจากวัสดุคาร์บอน

ประเทศไทยขึ้นชื่อว่าเป็นประเทศแห่งอุตสาหกรรมเกษตรและมีวัสดุเหลือทิ้งทางการเกษตรที่มากมายหลายหลาก การนำวัสดุเหลือทิ้งทางการเกษตรมาแปรรูปเป็นผลิตภัณฑ์มูลค่าสูงจึงเป็นหนึ่งในแนวคิดสำคัญที่จะช่วยเพิ่มรายได้ให้กับอุตสาหกรรมเกษตรของประเทศไทย หนึ่งในผลิตภัณฑ์มูลค่าสูงที่สามารถผลิตได้จากวัสดุเหลือทิ้งทางการเกษตร คือ ถ่านกัมมันต์ (activated carbon) ซึ่งเป็นถ่านที่มีรูพรุนปริมาณมาก สามารถนำไปใช้ดูดซับและกำจัดสิ่งปนเปื้อนเพื่อให้ได้ผลิตภัณฑ์ที่สะอาดเหมาะกับการนำไปใช้อุปโภคและบริโภคในอุตสาหกรรมต่างๆ เช่น

รางวัลโนเบล สาขาเคมี 2023 ผู้ปลูกควอนตัมดอทส์ เมล็ดพันธุ์แห่งวงการนาโนเทคโนโลยี

รางวัลโนเบลสาขาเคมีประจำปี 2023 ได้มอบรางวัลให้กับการค้นพบและการพัฒนาควอนตัมดอทส์(Quantum Dots, QTDs) หรือ “จุดควอนตัม” ซึ่งเป็นอนุภาคที่มีขนาดเล็กมากในระดับ 1-10 นาโนเมตร

รู้จักกับ “ลิกนิน” สารธรรมชาติที่แสนจะไม่ธรรมดา

ลิกนิน (Lignin) เป็นพอลิเมอร์ธรรมชาติ ที่สามารถพบได้ในพืชทั่วไปสูงถึง 30% ทำหน้าที่เปรียบเสมือนกาวประสานช่วยยึดโครงสร้างพืชให้มีความแข็งแรง นอกจากนี้ยังช่วยลดการระเหยของน้ำ และช่วยป้องกันการถูกทำลายของเนื้อเยื่อจากจุลินทรีย์ได้อีกด้วย ลิกนินมีโครงสร้างแบบอะโรมาติก (Aromatic

หมวดหมู่

โพสต์ยอดนิยม

Biorefinery series: การผลิตกรดแลคติกจากน้ำตาล ด้วยกระบวนการเชิงเคมีความร้อน

ไบโอรีไฟเนอรี่ (Biorefinery) หรือ อุตสาหกรรมพลังงานและเคมีชีวภาพ คือ อุตสาหกรรมการผลิตแห่งอนาคตที่นำชีวมวล หรือวัตถุดิบที่ได้จากพืช มาใช้เป็นสารตั้งต้น (feedstock) ในการผลิตเชื้อเพลิงชีวภาพ

Biorefinery series: น้ำมันเชื้อเพลิงอากาศยานชีวภาพจากน้ำมันปาล์ม

น้ำมันปาล์มเป็นน้ำมันพืชที่ได้จากผลของต้นปาล์มน้ำมันซึ่งเป็นพืชเศรษฐกิจที่หมุนเวียนได้ น้ำมันปาล์มนั้นสามารถนำมาใช้ประโยชน์ได้อย่างหลากหลาย ตั้งแต่นำมาใช้ได้โดยตรงเพื่อการปรุงอาหาร นำมาผลิตเป็นผลิตภัณฑ์เครื่องสำอาง หรือนำมาใช้เป็นสารตั้งต้นในอุตสาหกรรมโอลีโอเคมี (oleochemical industry) เช่น ผลิตสารหล่อลื่นชีวภาพ (biolubricant)

โพสต์ล่าสุด

นาโนสารสนเทศและปัญญาประดิษฐ์ ใน ยุค Web 3.0

เราคงคุ้นเคยกับคำว่า ปัญญาประดิษฐ์ หรือ AI เป็นอย่างดี ว่าจะมาช่วยมนุษย์ทำงาน คิดวิเคราะห์ข้อมูล และช่วยในการตัดสินใจ ทำให้เราทำงานได้รวดเร็วและมีประสิทธิภาพยิ่งขึ้น เนื่องจาก

การคำนวณเคมีเชิงคอมพิวเตอร์ภายใต้กลุ่มวิจัย NCAS (ตอนที่ 1)

การพัฒนาตัวเร่งปฏิกิริยาเคมีใหม่ๆ เพื่อช่วยเพิ่มประสิทธิภาพของกระบวนการเคมี โดยหลักการนั้นไม่ต่างจากการออกแบบรถยนต์ ที่ต้องอาศัยความรู้ความเข้าใจเชิงลึกเกี่ยวกับการทำงานของเครื่องยนต์ แต่ในกรณีของตัวเร่งปฏิกิริยาเคมี เครื่องยนต์กลไกที่เป็นหัวใจของการเกิดปฏิกิริยานั้น เป็นผลมาจากแรงอันตรกิริยาที่เป็นแรงดูดหรือแรงผลักระหว่างพื้นผิวของตัวเร่งและโมเลกุลของสาร ซึ่งปรากฎการณ์ดังกล่าวนั้นเกิดขึ้นในระดับนาโนเมตรหรือเล็กกว่า การวิเคราะห์วัสดุที่มาตราส่วนดังกล่าวนั้นมีความซับซ้อนและมักมีข้อกำจัดด้านเครื่องมือ หรือในบางกรณีสมบัติที่สำคัญนั้นยังไม่สามารถวัดได้โดยเครื่องมือที่มีอยู่ในปัจจุบัน